$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Class:	INDIAN SCHOOL MUSCAT				
SET - B VALUE POINTS 1. Propane < Propene <propene< th=""><th>XI</th><th colspan="3">SECOND PERIODIC TEST</th></propene<>	XI	SECOND PERIODIC TEST				
VALUE POINTS 1. Propane < Propence < Propyne 1 2. Methanal and pentan-3-one 1 3. Chain isomerism 1 4. a) n-pentane – greater surface area and has more vander Waal's force of attraction. 2 b) Benzene is formed. 2 b) Benzene is formed. 2 b) Benzene is formed. 2 CH ₃						
1. Propane < Propyne 2. Methanal and pentan-3-one 3. Chain isomerism 4. a) n-pentane = greater surface area and has more vander Waal's force of attraction. b) Benzene is formed. 5. H ₃ C C = C ₂ H ₅ H ₃ C C = C ₂ H ₅ Cis Trans b) Compound should satisfy (4n + 2) rule Delocalization of pi electrons Planarity (Any two) 6. a) Trans -isomer being symmetrical, can fit into crystal lattice more readily than cisisomer. b) 3,3-Dimethylpentane 7. Eclipsed Staggered Staggered Staggered CH ₃ H ₄ H ₄ H Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart, thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) 2CH ₃ COO ⁻ Na ⁺ = 2CH ₃ -C-O ⁻ +2Na ⁺ At anode: O O O O O O O O O O O O O O O O O O O						
2. Methanal and pentan-3-one 3. Chain isomerism 4. a) n-pentane – greater surface area and has more vander Waal's force of attraction. b) Benzene is formed. 5. H ₂ C C = C ₂ H ₅ H ₃ C C ₂ H ₅ Ch ₃ Trans b) Compound should satisfy (4n + 2) rule Delocalization of pi electrons Planarity (Any two) 6. a) Trans – isomer being symmetrical, can fit into crystal lattice more readily than cisisomer. b) 3,3-Dimethylpentane 7. Eclipsed Staggered Staggered Staggered Staggered Phy H ₃ C H ₄ H ₃ C H ₄ H ₄ H ₄ H ₄ Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart , thus there is minimum repulsive forces, minimum energy and maximum stability 8. i) 2CH ₃ COO⁻Na ⁺ = 2CH ₃ −C −O⁻ +2Na ⁺ At anode: O O O O O O O O O O O O O O O O O O O	1					
3. Chain isomerism 4. a) n-pentane — greater surface area and has more vander Waal's force of attraction. 5. a) H ₃ C C = C ₂ H ₃ H ₃ C C ₂ H ₅ C ₁₈ Trans b) Compound should satisfy (4n + 2) rule Delocalization of pi electrons Planarity 6. a) Trans — isomer being symmetrical, can fit into crystal lattice more readily than cisisomer. b) 3,3-Dimethylpentane 7. Eclipsed Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart, thus there is minimum repulsive forces, minimum energy and maximum stability 8. i) 2CH ₃ COO⁻Na [±] ⇒ 2CH ₃ −C−O⁻+2Na [±] At anode: O O O O O O O O O O O O O O O O O O						
4. a) n-pentane – greater surface area and has more vander Waal's force of attraction. b) Benzene is formed. 2 5. a) H ₃ C C = C ₂ H ₅ H ₅ C C ₂ H ₅ Cis Trans b) Compound should satisfy (4n + 2) rule Delocalization of pi electrons Planarity (Any two) 6. a) Trans – isomer being symmetrical, can fit into crystal lattice more readily than cisisomer. b) 3,3-Dimethylpentane 7. Eclipsed Staggered Staggered Staggered H H Staggered form the C-H bonds are far apart, thus there is minimum repulsive forces, minimum energy and maximum stability 8. i) 2CH ₃ COO ⁻ Na ⁺ ⇒ 2CH ₃ – C-O ⁻ + 2Na ⁺ At anode: O CH Staggered At anode: O CH Staggered At anode: O CH Staggered H H H Staggered form the C-H bonds are far apart, thus there is minimum repulsive forces, minimum energy and maximum stability 8. i) 2CH ₃ COO ⁻ Na ⁺ ⇒ 2CH ₃ – C-O ⁻ + 2Na ⁺ At anode: O CH Staggered form the C-H bonds are far apart, thus there is minimum repulsive forces, minimum energy and maximum stability At anode: O CH Staggered Acetate Methyl free free radical III) H ₃ C + CH ₃ → H ₃ C – CH ₃ ↑ IV) At cathode: H ₂ O+e ⁻ → ⁻ OH + H 2H → H ₃ C						
b) Benzene is formed. 5.						
a) H ₃ C C=C CH ₃ Trans b) Compound should satisfy (4n + 2) rule Delocalization of pi electrons Planarity (Any two) 6. a) Trans -isomer being symmetrical, can fit into crystal lattice more readily than cisiomer. b) 3,3-Dimethylpentane 7. Eclipsed Staggered Staggered CH ₃ H H Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart, thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) 2CH ₃ COO⁻Na⁺ ⇒ 2CH ₃ −C⁻O⁻+2Na⁺ At anode: O CH ₃ C=C CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ At anode: O CH ₃ C	4.		2			
Cis b) Compound should satisfy (4n + 2) rule Delocalization of pi electrons Planarity (Any two) 6. a) Trans—isomer being symmetrical, can fit into crystal lattice more readily than cisisomer. b) 3,3-Dimethylpentane 7. Eclipsed Staggered Staggered Staggered CH3 H H Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart, thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) 2CH3COO¯Na⁺ ⇒ 2CH3−C−O¯+2Na⁺ At anode: O O II 2CH3−C−O¯−2e¯→2CH3−C−O; →2CH3+2CO2↑ Acetate Ion Acetate Methyl free free radical radical iii) H₃C+CH3 → H₃C−CH3↑ iv) At cathode: H₂O+e¯→¬OH+H 2H→H₂↑	5.	H_5C_2 C_2H_5 H_3C C_2H_5	2			
Cis b) Compound should satisfy (4n + 2) rule Delocalization of pi electrons Planarity (Any two) 6. a) Trans—isomer being symmetrical, can fit into crystal lattice more readily than cisisomer. b) 3,3-Dimethylpentane 7. Eclipsed Staggered Staggered Staggered CH3 H H Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart, thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) 2CH3COO¯Na⁺ ⇒ 2CH3−C−O¯+2Na⁺ At anode: O O II 2CH3−C−O¯−2e¯→2CH3−C−O; →2CH3+2CO2↑ Acetate Ion Acetate Methyl free free radical radical iii) H₃C+CH3 → H₃C−CH3↑ iv) At cathode: H₂O+e¯→¬OH+H 2H→H₂↑		a) $C = C'$				
b) Compound should satisfy (4n + 2) rule Delocalization of pi electrons Planarity (Any two) 6. a) Trans—isomer being symmetrical, can fit into crystal lattice more readily than cisisomer. b) 3,3-Dimethylpentane 7. Eclipsed Staggered Staggered Staggered CH3 H Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart, thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) 2CH3COO¯Na⁻ ⇒ 2CH3 − C−O⁻ + 2Na⁻ At anode: O O II 2CH3 − C − O − 2e⁻ → 2CH3 − C − O⁻ + 2Na⁻ Acetate Ion Acetate Methyl free free radical III) H₃C + CH3 → H₃C − CH3 ↑ IV) At cathode: H₂O+e⁻ → ¬OH+H 2H→H₂↑						
Delocalization of pi electrons Planarity (Any two) 6. a) Trans –isomer being symmetrical, can fit into crystal lattice more readily than cisisomer. b) 3,3-Dimethylpentane 7. Eclipsed Staggered Staggered Staggered Staggered Staggered form. In staggered form the C-H bonds are far apart, thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) 2CH ₃ COO [*] Na ⁺ = 2CH ₃ -C-O [*] +2Na ⁺ At anode: O O O O O O O O O O O O O O O O O O						
Planarity (Any two) 6. a) Trans –isomer being symmetrical, can fit into crystal lattice more readily than cisisomer. b) 3,3-Dimethylpentane 7. Eclipsed Staggered Staggered Staggered Staggered CH3 H H Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart, thus there is minimum repulsive forces, minimum energy and maximum stability 8. i) 2CH3COO*Na* = 2CH3-C-O*+2Na* At anode: O O II 2CH3-C-O*-2e*-2CH3-C-O*-2CH3+2CO2* Acetate ion Acetate Methyl free free radical iii) H3C+ CH3 — H3C-CH3* iv) At cathode: H2O+e*-→*OH+H 2H→H2 9 a)						
isomer. b) 3,3-Dimethylpentane 7. Eclipsed Staggered CH ₃ H H Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart , thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) 2CH ₃ COO⁻Na⁺ ⇒ 2CH ₃ −C−O⁻+2Na⁺ At anode: O O I 2CH ₃ −C−Ō −2e⁻→2CH ₃ −C−O: →2CH ₃ +2CO ₂ ↑ Acetate ion Acetate Methyl free free radical iii) H ₃ C + CH ₃ → H ₃ C−CH ₃ ↑ iv) At cathode: H ₂ O+e⁻ → ⁻OH+H 2H→H ₂ ↑						
isomer. b) 3,3-Dimethylpentane 7. Eclipsed Staggered CH ₃ H H Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart , thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) 2CH ₃ COO⁻Na⁺ ⇒ 2CH ₃ −C−O⁻+2Na⁺ At anode: O O I 2CH ₃ −C−Ō −2e⁻→2CH ₃ −C−O: →2CH ₃ +2CO ₂ ↑ Acetate ion Acetate Methyl free free radical iii) H ₃ C + CH ₃ → H ₃ C−CH ₃ ↑ iv) At cathode: H ₂ O+e⁻ → ⁻OH+H 2H→H ₂ ↑						
b) 3,3-Dimethylpentane 7. Eclipsed Staggered CH ₃ H H Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart, thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) 2CH ₃ COO¯Na ⁺ ⇒ 2CH ₃ −C−O¯+2Na ⁺ At anode: O O O I 2CH ₃ COO¯Na ⁺ ⇒ 2CH ₃ −C−O¯+2Na ⁺ At anode: O Acetate ion Acetate Methyl free free radical radical iii) H ₃ C + CH ₃ → H ₃ C−CH ₃ ↑ iv) At cathode: H ₂ O+e¯ → ¯OH+H 2H→H ₂ ↑	6.		1+1			
Staggered						
Eclipsed Staggered	7	b) 3,3-Diffictify[pentalie	2			
Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart , thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) $2CH_3COO^*Na^+ \rightleftharpoons 2CH_3-C-O^*+2Na^+$ At anode: O II $2CH_3-C-O^*-2e^-+2CH_3-C-O^*-2CH_3+2CO_2 \uparrow$ Acetate ion Acetate Methyl free free radical radical iii) $H_3C + \dot{C}H_3 \longrightarrow H_3C-CH_3 \uparrow$ iv) At cathode: $H_2O+e^- \rightarrow ^-OH+\dot{H}$ $2\dot{H}\rightarrow H_2 \uparrow$	/.	Eclipsed Staggered	2			
Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart , thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) $2CH_3COO^-Na^+ \rightleftharpoons 2CH_3-C-O^-+2Na^+$ At anode: O O O O O O O O O O O O O O O O O O		CH ₃				
Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart , thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) $2CH_3COO^-Na^+ \rightleftharpoons 2CH_3-C-O^-+2Na^+$ At anode: O O O O O O O O O O O O O O O O O O		H_3C				
Staggered form is more stable than the eclipsed form. In staggered form the C-H bonds are far apart , thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) $2CH_3COO^-Na^+ \rightleftharpoons 2CH_3-C-O^-+2Na^+$ At anode: O O O O O O O O O O O O O O O O O O		ÇH ₃				
In staggered form the C-H bonds are far apart , thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) $2CH_3COO^-Na^+ \rightleftharpoons 2CH_3-C-O^-+2Na^+$ At anode: O O I $2CH_3-C-O^- \xrightarrow{-2e^-} 2CH_3-C-O^- \Rightarrow 2CH_3+2CO_2 \uparrow$ Acetate ton Acetate Methyl free free radical iii) $H_3C + CH_3 \longrightarrow H_3C-CH_3 \uparrow$ iv) At cathode: $H_2O+e^- \rightarrow ^-OH+H$ $2H \rightarrow H_2 \uparrow$		П				
In staggered form the C-H bonds are far apart , thus there is minimum repulsive forces, minimum energy and maximum stability 8. 1) $2CH_3COO^-Na^+ \rightleftharpoons 2CH_3-C-O^-+2Na^+$ At anode: O O I $2CH_3-C-O^- \xrightarrow{-2e^-} 2CH_3-C-O^- \Rightarrow 2CH_3+2CO_2 \uparrow$ Acetate ton Acetate Methyl free free radical iii) $H_3C + CH_3 \longrightarrow H_3C-CH_3 \uparrow$ iv) At cathode: $H_2O+e^- \rightarrow ^-OH+H$ $2H \rightarrow H_2 \uparrow$		н н				
minimum energy and maximum stability 8. 1) $2CH_3COO^-Na^+ \rightleftharpoons 2CH_3-C-O^-+2Na^+$ At anode: O O O O O O O O C O O O O O O O O O O		-				
8. i) $2CH_3COO^-Na^+ \rightleftharpoons 2CH_3-C-O^-+2Na^+$ At anode: O O O O C C C Acetate ion Acetate Methyl free free radical radical iii) $H_3\dot{C} + \dot{C}H_3 \longrightarrow H_3C-CH_3\uparrow$ iv) At cathode: $H_2O+e^- \rightarrow ^-OH+\dot{H}$ $2\dot{H}\rightarrow H_2\uparrow$						
i) $2CH_3COO^-Na^+ \rightleftharpoons 2CH_3-C-O^-+2Na^+$ At anode: O O $2CH_3-C-O^- \xrightarrow{-2e^-} 2CH_3-C-O^- \Longrightarrow 2CH_3+2CO_2 \uparrow$ Acetate ion Acetate Methyl free free radical radical iii) $H_3C + CH_3 \longrightarrow H_3C-CH_3 \uparrow$ iv) At cathode: $H_2O+e^- \rightarrow ^-OH+H$ $2H \rightarrow H_2 \uparrow$	8.	0	3			
At anode: O O O O O O O O O O O O O O O O O O		t) 2CH_COO ⁻ Na ⁺ → 2CH ₋ -C-O ⁻ +2Na ⁺				
O O O $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $						
Acetate ion Acetate Methyl free free radical radical iii) $H_3\dot{C} + \dot{C}H_3 \longrightarrow H_3C - CH_3 \uparrow$ iv) At cathode: $H_2O + e^- \rightarrow ^-OH + \dot{H}$ $2\dot{H} \rightarrow H_2 \uparrow$		At anode:				
Acetate ion Acetate Methyl free free radical radical iii) $H_3\dot{C} + \dot{C}H_3 \longrightarrow H_3C - CH_3 \uparrow$ iv) At cathode: $H_2O + e^- \rightarrow ^-OH + \dot{H}$ $2\dot{H} \rightarrow H_2 \uparrow$		O O				
free radical radical iii) $H_3\dot{C} + \dot{C}H_3 \longrightarrow H_3C - CH_3\uparrow$ iv) At cathode : $H_2O + e^- \rightarrow ^- OH + \dot{H}$ $2\dot{H} \rightarrow H_2\uparrow$		$2CH_3-C-O \xrightarrow{-2e} 2CH_3-C-O \xrightarrow{:} \longrightarrow 2CH_3+2CO_2 \uparrow$				
iv) At cathode: $H_2O+e^- \rightarrow ^-OH+H$ $2H \rightarrow H_2 \uparrow$ 9 a)						
$\begin{array}{c c} H_2O + e^- \rightarrow ^- OH + \dot{H} \\ \hline 2\dot{H} \rightarrow H_2 \uparrow \\ \hline \end{array}$		iii) $H_3\dot{C} + \dot{C}H_3 \longrightarrow H_3C - CH_3\uparrow$				
$ \begin{array}{c c} 2H \rightarrow H_2 \uparrow \\ \hline 9 & a) \end{array} $						
9 a) 3		$H_2O+e^- \rightarrow ^-OH+H$				
9 a) 3		$2\dot{H} \rightarrow H_2 \uparrow$				
	9.	a)	3			

	ii)	$C_6H_6 + Cl_2 \xrightarrow{Anhy AlCl_3} Cl$ Cl	
	b)	Negative part of the added reagent gets attached to the carbon atom having lesser number of hydrogen atoms.	
10.	a) i)	$CH_3Br + 2Na + BrCH_3 \xrightarrow{dry \ ether} CH_3 - CH_3 + 2NaBr$	3
	ii)	$_{ m L}^{ m CH_3}$	
		+ CH ₃ Cl Anhyd. AlCl ₃ + HCl	
	b)	Add Tollens reagent. Ethyne will give a white ppt of silver acetylide but not ethene.	